Biol 4464/8803 Developmental Biology, Fall 2015

Shuyi Nie – shuyi.nie@biology.gatech.edu, 309 EBB1

Text: Developmental Biology by Scott Gilbert is recommended (eBook available through CourseSmart http://www.coursesmart.com/9780878939787). Related online resources: supplement website http://10e.devbio.com that provides additional information and the sixth edition (http://www.ncbi.nlm.nih.gov/books/NBK9983/?term=developmental biology). Readings from recent review articles, primary literature and online resources, including **Developmental Biology Interactive**: www.devbio.biology.gatech.edu.

Topics (detailed schedule will be available at 1st class):

I: Introduction

Fertilization

Cleavage

Gastrulation and Mesoderm Induction

II: Neurulation

Neural Crest and EMT

Somitogenesis and Segmentation Clock

Limb Development Heart Development

III: Plant Development

C. elegans Development, Lineage and Patterning

Drosophila Development, Axis Formation, and HOX Code

Evo-Devo

IV: Developmental Genetics, Gene Regulation, and Epigenetics

Stem Cell Regeneration Aging

Aging

V: Student Presentation and Paper Discussion

Class Summary and Survey

Class schedule:

Aug 10th

Aug. 17th Introduction

I. Early Development: Fertilization, Cleavage, and Gastrulation

Aug. 19	rerunzation (mainly Chapter 4, a fittle oil of Chapter 17)
Aug. 21st	Fertilization
Aug. 24 th	Fertilization and Cleavage
Aug. 26 th	Cleavage (first pages of Chapters 5-9)
Aug. 28 th	Gastrulation and mesoderm induction (Ch7~p225, most of Ch8-9)

Eartilization (mainly Chapter A. a little hit of Chapter 17)

Aug. 31st Gastrulation and mesoderm induction Sept. 2nd Gastrulation and mesoderm induction

Sept. 4th Gastrulation and mesoderm induction, *first take home exam*

Sept. 7th Labor Day, No Class II. Organogenesis Sept. 9th Neurulation, first take home exam due Sept. 11th Neurulation (last portion of Ch8-9, first pages of Ch10) Sept. 14th Neurulation Sept. 16th Neural Crest and EMT (Ch11 p375-392) Sept. 18th Neural Crest and EMT Sept. 21st Somitogenesis and Segmentation Clock (Ch12 p417-429) Sept. 23rd Somitogenesis and Segmentation Clock Sept. 25th Limb Development (Ch14) Sept. 28th Limb Development Sept. 30th Heart Development (Ch13, p449-460) Oct 2nd Heart Development, second take home exam III. Development in Plants and Invertebrates Oct. 5th Plant Development Oct. 7th C. elegans Development, second take home exam due Oct. 9th C. elegans Development (Ch5, p170-178) Oct. 12th Fall Break, No Class Oct. 14th C. elegans Development Oct. 16th Drosophila Development (Ch6) Oct. 19th Drosophila Development Oct. 21st Drosophila Development Oct. 23rd Evo-Devo, third take home exam (part of Ch 20) IV. Developmental Regulation, Stem cell, and Postembryonic Development Oct. 26th Developmental Genetics, Gene Regulation, and Epigenetics (Ch2) Oct. 28th Developmental regulation, third take home exam due Oct. 30th Stem Cell (p319, p347, p472, etc.) Nov. 2nd Stem Cell Nov. 4th Regeneration (p568) Nov. 6th Regeneration and Aging Nov. 9th Aging, fourth take home exam (p579)

V Student Presentation

Nov. 11th paper discussion

Nov. 13 th	Student Presentation (#1-2), fourth take home exam due
Nov. 16 th	Student Presentation (#3-4)
Nov. 18 th	Student Presentation (#5-6)
Nov. 20 th	Student Presentation (#7-8)
Nov. 23 rd , 25 th &27 th	Thanksgiving Holidays, No Class
Nov. 30 th	Student Presentation (#9-10)
Dec. 2 nd	Student Presentation (#11-12)
Dec. 4 th	Student Presentation and Class Summary (#13 & summary)

Expectations: Understand developmental processes in general, and more importantly, think like a developmental biologist, and be able to:

- 1. Pose questions and hypotheses concerning developmental processes, and perform literature search to validate the hypotheses.
- 2. Identify appropriate model organisms for testing hypotheses.
- 3. Outline experiments or experimental strategies to test specific hypotheses.
- 4. Read literature and think critically whether the experimental design, data analysis, and conclusions are warranted.
- 5. Communicate current findings, ideas and models of developmental processes to peers, both orally and in written (e.g. on webpage).

We are not going to emphasis memorization in this class (although you do need to know some basics to understand a particular process), and in fact, lots of information, e.g. the activities of a signaling pathway in a certain process, will change over time as our understanding advances. What is important is that you learn to integrate information collected from different sources (and judge them critically) to understand a problem, form hypothesis, design experiments to test the hypothesis rigorously, and interpret the results properly.

Assessment (Grading):

In class quiz - 25%

Four take home exams - 50% (with one lowest grade dropped, the remaining three grades will be averaged)

Final presentation - 25% (students will choose a topic, find a research article on the topic, and present it to the class. The presentation will include an introduction of the topic and necessary background knowledge for understanding the article, and a journal club style paper discussion.)

Bonus point -5% extra (publish a web page summarizing information learned on the topic.)

Honor Code:

You are expected to abide by Georgia Tech's honor code (www.honor.gatech.edu). We will mainly have take home exams and you are not allowed to discuss or collaborate on those exams. Similar answers will all get scored 0. You can refer to textbooks, lecture notes, etc. **Plagiarism is never allowed** - all writing must be in *your own words*, AND you must cite or acknowledge all sources of ideas, text, and images or figures. The take home exam is expected to be finished in an hour.