Event Details
Come join the Spatial Ecology and Paleontology Lab every Friday for Fossil Fridays!
Become a fossil hunter and help discover how vertebrate communities have changed through time. Experience firsthand what it is like to be a paleontologist, finding and identifying new specimens!
You will be picking and sorting 3,000 to 30,000-year-old fossil specimens from rock matrix that has been brought back from Natural Trap Cave, WY. These specimens are part of many research projects examining how the community of species living around Natural Trap Cave has changed since the extinction of the cheetahs, lions, dire wolves, mammoths, camels, horses, and other megafauna that used to live in North America.
You are welcome to participate anytime that is convenient, with no commitment necessary. In fact, you can drop in or leave anytime within the two-hour timeframe. All are welcome, so bring your friends!
For more information join the mailing list and/or contact Katie Slenker (kslenker3@gatech.edu) or Jenny McGuire (jmcguire@gatech.edu).
* No T. rex actually helped with the excavations of Natural Trap Cave as their arms would be much too small.
Event Details
Come join the Spatial Ecology and Paleontology Lab every Friday for Fossil Fridays!
Become a fossil hunter and help discover how vertebrate communities have changed through time. Experience firsthand what it is like to be a paleontologist, finding and identifying new specimens!
You will be picking and sorting 3,000 to 30,000-year-old fossil specimens from rock matrix that has been brought back from Natural Trap Cave, WY. These specimens are part of many research projects examining how the community of species living around Natural Trap Cave has changed since the extinction of the cheetahs, lions, dire wolves, mammoths, camels, horses, and other megafauna that used to live in North America.
You are welcome to participate anytime that is convenient, with no commitment necessary. In fact, you can drop in or leave anytime within the two-hour timeframe. All are welcome, so bring your friends!
For more information join the mailing list and/or contact Katie Slenker (kslenker3@gatech.edu) or Jenny McGuire (jmcguire@gatech.edu).
* No T. rex actually helped with the excavations of Natural Trap Cave as their arms would be much too small.
Event Details
Come join the Spatial Ecology and Paleontology Lab every Friday for Fossil Fridays!
Become a fossil hunter and help discover how vertebrate communities have changed through time. Experience firsthand what it is like to be a paleontologist, finding and identifying new specimens!
You will be picking and sorting 3,000 to 30,000-year-old fossil specimens from rock matrix that has been brought back from Natural Trap Cave, WY. These specimens are part of many research projects examining how the community of species living around Natural Trap Cave has changed since the extinction of the cheetahs, lions, dire wolves, mammoths, camels, horses, and other megafauna that used to live in North America.
You are welcome to participate anytime that is convenient, with no commitment necessary. In fact, you can drop in or leave anytime within the two-hour timeframe. All are welcome, so bring your friends!
For more information join the mailing list and/or contact Katie Slenker (kslenker3@gatech.edu) or Jenny McGuire (jmcguire@gatech.edu).
* No T. rex actually helped with the excavations of Natural Trap Cave as their arms would be much too small.
Event Details
Come join the Spatial Ecology and Paleontology Lab every Friday for Fossil Fridays!
Become a fossil hunter and help discover how vertebrate communities have changed through time. Experience firsthand what it is like to be a paleontologist, finding and identifying new specimens!
You will be picking and sorting 3,000 to 30,000-year-old fossil specimens from rock matrix that has been brought back from Natural Trap Cave, WY. These specimens are part of many research projects examining how the community of species living around Natural Trap Cave has changed since the extinction of the cheetahs, lions, dire wolves, mammoths, camels, horses, and other megafauna that used to live in North America.
You are welcome to participate anytime that is convenient, with no commitment necessary. In fact, you can drop in or leave anytime within the two-hour timeframe. All are welcome, so bring your friends!
For more information join the mailing list and/or contact Katie Slenker (kslenker3@gatech.edu) or Jenny McGuire (jmcguire@gatech.edu).
* No T. rex actually helped with the excavations of Natural Trap Cave as their arms would be much too small.
Event Details
Come join the Spatial Ecology and Paleontology Lab every Friday for Fossil Fridays!
Become a fossil hunter and help discover how vertebrate communities have changed through time. Experience firsthand what it is like to be a paleontologist, finding and identifying new specimens!
You will be picking and sorting 3,000 to 30,000-year-old fossil specimens from rock matrix that has been brought back from Natural Trap Cave, WY. These specimens are part of many research projects examining how the community of species living around Natural Trap Cave has changed since the extinction of the cheetahs, lions, dire wolves, mammoths, camels, horses, and other megafauna that used to live in North America.
You are welcome to participate anytime that is convenient, with no commitment necessary. In fact, you can drop in or leave anytime within the two-hour timeframe. All are welcome, so bring your friends!
For more information join the mailing list and/or contact Katie Slenker (kslenker3@gatech.edu) or Jenny McGuire (jmcguire@gatech.edu).
* No T. rex actually helped with the excavations of Natural Trap Cave as their arms would be much too small.
Event Details
Come join the Spatial Ecology and Paleontology Lab every Friday for Fossil Fridays!
Become a fossil hunter and help discover how vertebrate communities have changed through time. Experience firsthand what it is like to be a paleontologist, finding and identifying new specimens!
You will be picking and sorting 3,000 to 30,000-year-old fossil specimens from rock matrix that has been brought back from Natural Trap Cave, WY. These specimens are part of many research projects examining how the community of species living around Natural Trap Cave has changed since the extinction of the cheetahs, lions, dire wolves, mammoths, camels, horses, and other megafauna that used to live in North America.
You are welcome to participate anytime that is convenient, with no commitment necessary. In fact, you can drop in or leave anytime within the two-hour timeframe. All are welcome, so bring your friends!
For more information join the mailing list and/or contact Katie Slenker (kslenker3@gatech.edu) or Jenny McGuire (jmcguire@gatech.edu).
* No T. rex actually helped with the excavations of Natural Trap Cave as their arms would be much too small.
Event Details
Join us for a talk by Christopher Jernigan, a research associate at Cornell University and prospective faculty candidate in integrative physiology.
There is no virtual option for this event.
Abstract: Like humans and other primates, faces are special visual objects for the paper wasp Polistes fuscatus. These wasps possess individually distinctive color patterns on their face, which they can use to visually recognize and discriminate nestmates. To investigate the neural mechanisms underlying this ability, and compare this to what is known in primate systems I presented a large set of visual stimuli, while recording extracellular activity across the brain. I ask (1) if there are neural responses that are selective to conspecific wasp images, (2) where they are located, and (3) what the tuning features of neurons with highly selective responses to conspecific wasp images are. We find broad selectivity to forward-facing wasp shapes (i.e., silhouettes) across the brain, including the optic lobe. We also find highly localized neural responses in the wasp protocerebrum selective to full images of forward-facing wasps, which have color patterns. We term these forward-facing wasp units, wasp cells. Wasp cells show idiosyncratic facial tuning, tending to prefer a subset of faces or specific facial features in our dataset. Collectively this population of wasp cells exhibited a specific location both within and across animals. Together, these cells show similar responses to more similar facial patterns such that at the population response level neural distance among faces is correlated with phenotypic facial distance, suggesting a population level encoding of facial identity by wasp cells. Despite having independently evolved vision let alone facial recognition, wasp cells show remarkable parallels to the face cells found in primates, suggesting that dedicated circuits with idiosyncratic feature tuning may be critical features of visual identity recognition. Further, this system now provides a key opportunity to study how these tuning features emerge through development and how social experience may shape the key axes of these tuning properties.
Event Details
The Institute for Neuroscience, Neurotechnology, and Society (INNS) at Georgia Tech has initiated an internal search for its inaugural executive director. This new Interdisciplinary Research Institute (IRI) will build upon the foundation laid by the Neuro Next Initiative, fostering cutting-edge research and innovation at the intersection of neuroscience, neurotechnology, and societal impact.
At the newly established IRI, the executive director will profoundly shape a unifying vision for neuroscience research and innovation at Georgia Tech, integrating various disciplines and fostering collaboration across campus. They will translate research into practical applications, engage students, and connect them to industry networks. The ideal candidate will have a visionary, innovative, and entrepreneurial leadership style, with experience in leading large-scale, interdisciplinary research initiatives, securing external funding, and promoting large-scale initiatives both internally and externally.
INNS aims to advance our understanding of the brain and nervous system, develop transformative technologies, and address critical societal challenges through interdisciplinary collaboration and engagement. INNS is dedicated to advancing innovative research and educational programs in neuroscience, neurotechnology, and society; fostering a broad and engaged community; and empowering society through public engagement and responsible technology deployment.
Click here to learn more about this position and how to apply.
Five years after the headline-grabbing “murder hornet” (Vespa mandarinia, renamed the northern giant hornet in 2022) was first spotted in Washington state, the U.S. has declared the invasive species eradicated.
The Washington State Department of Agriculture and the U.S. Department of Agriculture made the announcement Wednesday. It follows three years without a confirmed detection of the hornet. Four nests were destroyed in 2020 and 2021.
While the number of nests was low, Professor Mike Goodisman, whose lab studies social insects and invasive species, explains that had the number grown, eradication would have been increasingly unlikely due to the potential exponential growth of the population.
"Each nest is started by a new queen. One new queen can start a new nest, but the colony she produces can produce 100 new nests. Because of how they reproduce, it could grow from 100 to 10,000 the year after that, and then from 10,000 to one million."
Goodisman says that social insects are more difficult to eradicate. However, traps and tracking methods allowed officials to contain the population in the Pacific Northwest. While the murder hornet is not the only invasive hornet species in North America, its threat to the already-declining honeybee population spurred action. Murder hornets can clear out a honeybee hive in 90 minutes, and Goodisman says the brutality of these attacks earned the northern giant hornet their nickname and is instantly recognizable.
"When murder hornets attack a honeybee colony, you'll find hundreds to thousands of decapitated honeybees," he said, adding that although murder hornets eat a variety of insects, they "have a taste for honeybees."
In the murder hornet's native Asia, the honeybee population has developed a defense mechanism to swarm and surround the attacking hornet, but North American honeybees are defenseless. This elevates the threat of a possible invasion, with the potential for a widespread impact on our food supply.
"A threat to the honeybee population would be a commercial disaster," Goodisman said. "Honeybees are critical in agriculture for pollinating a great variety of the foods we eat, and if we don't have these pollinators, then we wouldn't have many of the foods — fruits especially — that we are used to."
The eradication of the hornet is a significant achievement, but Goodisman says it's not a foregone conclusion that they will not reemerge. Because social insects, like murder hornets, can hibernate in various materials, cargo ships and other commercial transportation can unknowingly bring invasive species worldwide. He explains that officials will continue to set traps and employ additional tracking methods to ensure the population remains eradicated in the U.S.
If murder hornets come back, humans are not at immediate risk. Like the bald-faced hornet and the true hornet, which live in Georgia, murder hornets typically leave humans alone unless provoked, Goodisman says, but their larger-than-normal stingers cause more pain and are more harmful to small animals.
Pages
