Much of the damage from climate change is in front of our eyes: Bleached-out coral reefs, destroyed homes and flooded neighborhoods ravaged by hurricanes, dangerous wildfires scorching Northern California forests. Worst-case scenarios involve remade coastlines, stunted crops, and social unrest caused by scarce resources.

An international group of microbiologists, however, is warning that as science tries to search for solutions to climate change, it’s ignoring the potential consequences for climate change’s tiniest, unseen victims – the world’s microbial communities.

Frank Stewart, associate professor in the School of Biological Sciences, is one of more than 30 microbiologists from nine countries who today issued a statement urging scientists to conduct more research on microbes and how they are affected by climate change.

The statement, “Scientist’s warning to humanity: Micro-organisms and climate change,” was published in the journal Nature Reviews Microbiology. Lead author is Rick Cavicchioli, microbiologist at the School of Biotechnology and Biomolecular Sciences, in the University of New South Wales (Sydney).

“The consensus statement by Cavicchiolli and colleagues is an overdue warning bell,” Stewart says. “Its goal is to alert stakeholders that major consequences of climate change are fundamentally microbial in nature. As a co-author, I'm hopeful this statement finds a wide audience of nonscientists and scientists alike and also serves as a call to action. Microbes must be considered in solving the problem of climate change.”

The impact on microbes

In the statement, Cavicchiolli calls microbes the “unseen majority” of all life on Earth. Their communities serve as the biosphere’s support system, playing key roles in everything from animal and human health, to agriculture and food production.

A cited example: An estimated 90% of the ocean’s biomass consists of microbes. That includes phytoplankton, lifeforms that are not only at the start of the marine food chain, but also do their part to remove carbon dioxide from the atmosphere. But the abundance of some phytoplankton species is tied to sea ice. The continued loss of ice as oceans warm could therefore harm the ocean food web.

“Climate change is literally starving ocean life,” Cavicchioli said in a press release about the consensus statement.

The microbiologists are also worried about microbial environments on land. Microbes release important greenhouse gases like methane and nitrous oxide, but climate change can boost those emissions to unhealthy levels. It can also make it easier for pathogenic microbes to cause diseases in humans, animals, and plants. Climate change affects the range of flying insects that carry some of those pathogens. “The end result is the increased spread of disease, and serious threats to global food supplies,” Cavicchioli said.

“Just as microbes in our bodies critically affect our health, microbes in the environment critically affect the health of ecosystems,” Stewart says. “But microbial processes are changing dramatically under global climate change, including in ways that fundamentally alter food webs and accelerate climate change.”

A call to boost research

Georgia Tech researchers such as Stewart, Mark Hay, Kim Cobb, and Joel Kostka have become experts in researching climate change’s impact on diverse ecosystems, from coral reefs to subarctic peat bogs. Much of their work already focuses on microbes and the roles they play in these stressed environments.

“For example, ocean warming is driving the loss of oxygen from seawater, leading to large swaths of ocean dominated exclusively by microbes,” Stewart says. “Our research at Georgia Tech tries to understand how such changes affect the microbial cycling of essential nutrients.”

According to the consensus paper, that kind of research should play a bigger role when governments and scientists work on policy and management decisions that might mitigate climate change. Also, research that ties biology to worldwide geophysical and climate processes should give greater consideration of microbial processes.

“This goes to the heart of climate change,” Cavicchioli says. “If microorganisms aren’t considered effectively, it means models cannot be generated properly and predictions could be inaccurate.”

Microbiologists can endorse the consensus statement and add their names to it here: https://www.babs.unsw.edu.au/research/microbiologists-warning-humanity

Editor's Note: This story – narrative, photography, and slide show – is by the Georgia Tech students in the 2019 NGS-CR Study-Abroad Program, which is an interdisciplnary program co-taught by School of Public Policy Professor Juan Rogers.

In just five weeks, we interviewed a former vice president of Costa Rica, scrambled up the slopes of a volcano, and came face to face with sloths, vipers, and bullet ants. The Nature, Governance, and Sustainability in Costa Rica (NGS-CR) Study-Abroad Program has been an unbelievable experience. From the remote jungles of Sarapiqui to the stunning peaks of Monteverde, Costa Rica has inspired us to explore and learn at every turn.

Our program started in early May in the capital city of San Jose. We experienced new culture every step of the way, through the museums we visited and atop country’s highest volcano. We made a difference in the community by teaming up with Lead University to reduce plastic pollution by sorting and recycling plastic bottle caps. We also met with Kevin Casas Zamora, a former vice president of Costa Rica, and discussed the nation’s history and current policy concerns.

Next, we went deep into the tropical rainforest to La Selva Biological Station, one of the leading research institutions studying tropical ecology. Hundreds of species of trees towered over us, filled with multicolored bromeliads and orchids and teeming with strange insects and birds. Oh yeah, and sloths! 

Mornings were filled with the warbled calls of birds and the bellows of howler monkeys. Strikingly beautiful yellow and green tree frogs leaped into view when our flashlights found them during our night hikes. Cold rain fell seemingly out of nowhere to dash away the heat of day.

We learned about the history of chocolate, known here as the “drink of the gods.” We heard how locals are educating their communities about climate change and sustainable practices. We left knowing that a single hummingbird can effect change – and with a lot of chocolate.

We then traveled to Monteverde, a mountain town enveloped by clouds, where we welcomed the drop in temperature with open arms. We partnered with the Monteverde Institute, which aims to educate the local community about the importance of sustainability. Visiting small, sustainable farms forced us to confront the unique challenges of sustainable, organic farming.

We trudged through mud and cow manure to visit the farm of a direct descendant of one of the first Quaker families to settle in Monteverde. We were treated to delicious home-cooked meals made from all-natural ingredients, such as fresh, soft tortillas filled with hot gallo pinto, Costa Rica’s national dish, consisting of beans and rice.

Our trip to Monteverde also included delicious tasting of local coffee, and of course, the thrill of zip-lining through the forests.

Our experiences have been part of two interconnected classes, BIOL 4813: Tropical Biology & Sustainability and PHIL 3127: Science, Technology, and Human Values. These classes have integrated biological and social sciences so students can better understand how Costa Rica, the United States, and the world construct political mechanisms to organize societies and sustain natural systems.

Our instructors were Michael Goodisman, an associate professor in the School of Biological Sciences, and Juan Rogers, a professor in the School of Public Policy.

The NGS-CR Study-Abroad Program has been supported by the Office of International Education, the Steve A. Denning Chair for Global Engagement, and the Center for Serve-Learn-Sustain. The program is affiliated with the College of Sciences, and its courses are taught by faculty from the School of Biological Sciences in the College of Sciences and the School of Public Policy in the Ivan Allen College of Liberal Arts.

We are this story’s authors, the participants (and our majors) of the 2019 NGS-CR Study-Abroad Program:

  • Biology: Henry Crossley, Sarah Kuechenmeister, Amelia Smith, and Veronica Thompson
  • Biochemistry: Rajan Jayasankar
  • Environmental engineering: Miriam Campbell, Abigail Crombie, Catherine Mellette, and Isabelle Musmanno
  • Industrial engineering: Laura “CC” Gruber
  • Psychology: Katherine Chadwick

When I volunteered for a study that will observe and measure movements during walking, I knew only that my participation would help researchers figure out how to make better prostheses for people missing limbs. I didn’t know that the experience would surface strong feelings of empathy for people with ambulatory problems.

On the day of my appointment, I was met by Kinsey Herrin, a prosthetist/orthotist and the clinical liaison for the study, and Samuel Kwak, the graduate student working with Young-Hui Chang on the research study. Chang is a professor in the School of Biological Sciences and the principal investigator of the Comparative Neuromechanics Laboratory, where the study took place.  

The study – “Accelerating Large-Scale Adoption of Robotic Lower-Limb Prostheses through Personalized Prosthesis Controller Adaptation” – compares the motions, forces, and muscle activity during walking of people with amputations versus controls. The goal is to develop better ways of controlling prostheses. I was part of the control group. My counterpart, I learned, is a woman who is amputated below the knee on her left leg.

After the orientation to the study and reminders of confidentiality and safety, Sam and Kinsey put me through several walking sessions: normal, with a knee brace locked in extension, with an ankle brace, and with both braces. Each session started with a measurement of base line, followed by walking on a split-belt treadmill three times, each at a different speed. At each speed, I’d walk for three minutes before data are collected.

Data were collected from the force plates beneath the treadmill and by infrared cameras recording the movements. As I walked, I saw on a monitor the motion of my legs – shown as white dots corresponding to infrared sensors tacked on to various parts of each lower limb.

It was easy-peasy with normal walking; the only mildly tricky part was trying to mind the small gap between the two parts of the split-belt treadmill.

With braces on just one leg, it was a different story. The braces were heavy. My left leg was constrained. I never felt so asymmetrical in my life. Walking without the ability to bend the knee, or flex the ankle, is awkward, at best.

“This is tough,” I heard myself saying over and over. If this is tough for me, I thought, how much more for people without limbs; it must be harrowing for them.

Kinsey has worked with patients who have amputations. While prosthetists are quite adept at creating functional passive prostheses for patients, restoring power naturally during walking is much more challenging.

Prosthetists and patients can spend lots of time in the clinic over multiple visits tuning a powered device to be perfect, Kinsey said. The back and forth can create a burden on the patient and the clinician. The ultimate goal of this study – Kinsey and Sam reminded me several times – is to make prosthesis tuning easier and more automatic for patients and clinicians.

I spent three hours volunteering for the study. I consider those among the most useful three hours of my life, considering that my participation could help ease the life of people with lower limb amputations.

The study needs more volunteers. If you can spare three hours to advance the science of prosthesis control, contact Kinsey at kinsey.herrin@biosci.gatech.edu for more information.

Georgia Tech has selected Troy Hilley as the recipient of the 2019 Process Improvement Excellence Award. Hilley is an academic and research IT support engineer lead in the College of Sciences’ Academic and Research Computing Services (ARCS).

The award celebrates staff who consistently invent or improve tools, processes, or systems and ask: How can we do this better? Why do we do it that way?

For years Hilley was responsible for the day-to-day operations and maintenance of faculty, research group, and administrative computing infrastructure in the School of Biological Sciences. In that capacity he established himself as a leader in thinking creatively and acting proactively to prepare the school for the rapidly changing environment for integrative computing.

“With no budget and limited resources, he used free open-source software to completely overhaul OS X management from installation to end-user software management.”

Hilley’s leadership is evident in the improvements he initiated with the management and support of Apple OS X computers on campus. This problem had been adversely affecting faculty, staff, and students and causing substantial frustration.

Whereas other IT staff merely accepted the status quo, “Troy did a clean sweep of the status quo,” according to a colleague. “With no budget and limited resources he used free open-source software to completely overhaul OS X management from installation to end-user software management.”

Hilley then implemented a system to completely automate most of the software updates. This ensured that systems and end users have the latest security and feature updates immediately.

Still seeing room for improvement, Hilley then put in place a system that enables IT staff to get detailed information on the status of the computers under ARCS management. With this system, IT staff could proactively assist users, saving time and frustration.

The process and tooling improvements Hilley established increased the speed and accuracy of support while simultaneously decreasing the frustration among both IT staff and end users. That they were achieved at no cost is a “rare optimization gem,” a colleague says.

Hilley “continues to innovate and improve tools, processes, and systems that directly help our clients and enhance the organization’s effectiveness,” another colleague says. 

Georgia Tech has named William Ratcliff and Peter Yunker as recipients of the 2019 Sigma Xi Faculty Best Paper Award.

Ratcliff was recently promoted to associate professor in the School of Biological Sciences and a member of the Center for Microbial Dynamics and Infection. Yunker is an assistant professor in the School of Physics. Both are members of the Parker H. Petit Institute of Bioengineering and Bioscience.

The award recognizes the authors of an outstanding paper. Ratcliff and Yunker are co-principal authors of the paper “Cellular packing, mechanical stress and the evolution of multicellularity,” published in Nature Physics in 2018.

“[The paper] exemplifies the power of interdisciplinary collaboration and best reflects Georgia Tech’s institutional culture of creative and rigorous exploration.”

The paper was the first to recognize the role of mechanics in the early evolution of multicellular organisms. Ratcliff and Yunker showed “how physical stress may have significantly advanced the evolutionary path from single-cell to multicellular organisms,” according to a 2017 story about this work. “In experiments with clusters of yeast cells called snowflake yeast, forces in the clusters’ physical structures pushed the snowflakes to evolve.

“Like the first ancestors of all multicellular organisms, in this study the snowflake yeast found itself in a conundrum: As it got bigger, physical stresses tore it into smaller pieces. So, how to sustain the growth needed to evolve into a complex multicellular organism?

“In the lab, those shear forces played right into evolution’s hands, laying down a track to direct yeast evolution toward bigger, tougher snowflakes.”

The partnership has profoundly shaped the two scientists’ research programs. “The paper reflects the deep collaboration between the Yunker and Ratcliff labs,” a colleague says. “It exemplifies the power of interdisciplinary collaboration and best reflects Georgia Tech’s institutional culture of creative and rigorous exploration.”

 “There are few things better than doing exciting, creative science with good friends,” Ratcliff says.

“I’m delighted to share this recognition with such a great team,” Yunker says.

Editor's Note: This story by Audra Davidson originally appeared on April 9, 2019, in Charged Magazine.

For as long as I can remember, I have been obsessed with how people move. Now, hear me out. Even simple movements are fascinating if you really think about it. Electrical signals from your brain and spinal cord communicating with hundreds of muscles, forcing them to work together in a perfectly balanced symphony of contractions. All to maneuver our unwieldy skeletons gracefully through space.

Do me a favor and stand up.

For most of us, this movement feels like one of the simplest things we can do.

Now, look at your legs.

There are over 50 muscles below your hips alone. Yet, all these muscles just contracted in expert harmony to use the precise amount of force needed to move your body against gravity, all while maintaining near perfect balance. Precisely how we can perform these seemingly simple yet crucial movements on a whim is an active and exciting area of research, leading us toward innovation in movement rehabilitation, robotics, and beyond. These are movements we don’t even notice, like activating our muscles to breathe, blink, maintain our balance, or even walk. If you did notice these movements, you likely wouldn’t be able to focus on much else, transforming a simple grasp into an impossible and difficult task.

Luckily, you don’t need your brain to do any of these things.

More than just a cord

Many people think of the spinal cord as just that, a cord. The cords and cables we typically interact with are charged with a very important but relatively simple task: bringing electricity from point a to point b. While the spinal cord is very important for bringing electrical signals from your brain to your muscles and organs, it does so much more.

Picture an orchestra with a smart but rather lazy conductor performing for an audience. The musicians are like the motor neurons in the spinal cord, connecting to and contracting the muscles when the neurons fire, allowing you to move. Complicated musical pieces require guidance by our lazy conductor, just like throwing a dart or grasping an object requires guidance by the brain.  The audience’s cheers allow the orchestra to adapt, just like you use sensations from your body to improve or guide movements.

Yet, just like our experienced musicians don’t need the conductor to play simple or repetitive musical pieces, you don’t need your brain to perform “classic” movements. “The spinal cord is able to achieve so many behaviors by itself, completely isolated from the brain,” explains Dr. Cope, spinal cord neurobiology researcher and Georgia Institute of Technology professor.  “You can completely isolate the spinal cord in a living animal from the brain and it can walk on a treadmill. It can change speeds as the treadmill changes speed. You put an obstacle in its way, it can learn to lift its leg over that obstacle,” all without our lazy conductor.

It was discovered in the early 1900’s that your motor neurons are fully capable of running the show. “What that tells you is that there is this rich circuitry that in fact the whole motor system relies upon,” Dr. Cope explained. All in all, it looks like the spinal cord has the classics all worked out for you. Feel free to tell your conductor they can take the day off.

How to run around like a chicken with its head cut off

Unsurprisingly, experienced musicians are able to play complicated, intricate music without their conductor. Surprisingly to many, however, your spinal cord is able perform complicated, intricate behaviors without any input from the brain. How exactly are these behaviors possible? It’s all in the organization.

If you’ve ever gotten a physical, you have probably experienced the odd sensation of your leg flying through the air without your consent. In the right spot, a simple tap on your knee by the doctor sends your foot on a trip automatically. We commonly refer to these types of movements as “reflexes,” in which no approval by the brain is required. This reflex pathway is relatively simple in organization; only two neurons are required, making this one of the fastest reflexes we have. One neuron senses the stretch of your muscle caused by the tap and immediately tells the second neuron to flex that same muscle. This flexion rapidly moves your leg before you can stop to think about it. This can happen in less than a few milliseconds! You use your stretch reflex more often than your visits to the doctor, however. The stretch reflex helps you keep your balance without a second thought and is believed to be crucial for general sensory feedback and movement control.

What if we make things a little more complicated? Instead of just two neurons, let’s add in two sets of neurons in the spinal cord: set A controlling muscle a, and set B controlling muscle b. Much like a seesaw, these sets of neurons rhythmically alternate in activity. A neurons fire until they run out of juice, then B neurons take over and the cycle continues. With this small set of neurons, a pattern of alternating activity emerges. Together, A and Bneurons form a central pattern generator. For humans, however, a 2-muscle central pattern generator isn’t very useful. Adding in more sets of neurons allows your spinal cord to rhythmically control more muscles in a more complicated pattern. With anything from breathing and scratching an itch to walking and running, the spinal cord is in charge.

The patterns are there in your spinal cord, all you need to do is press start. “One of the things the brain does and can take full advantage of is to just send a ‘go’ signal to the spinal cord,” Dr. Cope explained. “[The brain] can say ‘Hey, all of the complicated things you do with timing and organizing … different muscles in different patterns, you do it. You’ve worked all that out. I don’t have to complicate my life with that.’” And while the brain can initiate and influence this pattern of alternating activity, it isn’t required. This pattern can just as easily be started by sensory input from your environment, or by sensory signals from throughout your body.

At the end of the day, it seems like the spinal cord has it all figured out for us. But do we have the spinal cord all figured out? Not even close.

The Mysterious Cord

In the past year, the news has been abuzz with instances of paralyzed patients regaining the ability to walk. Paralysis is typically caused by spinal cord damage. Up until recently it seems, spinal cord injuries often left patients with limbs that were difficult or impossible to move willingly, oftentimes without hope for improvement. So how are these patients taking these miraculous steps?

A better question might be what happens to the spinal cord when it’s injured? We know some things about how it repairs itself, but we are far from the whole story. This means we are a far cry from fully repairing spinal cords ourselves. While these recent miraculous findings may make it seem like we have it all figured out, don’t let that fool you. “I think it’s exciting and I think it’s encouraging. I would say that we shouldn’t let our encouragement overshadow the fact that it’s nowhere close to what we want,” laments Dr. Cope.  “It’s going to require some basic neuroscience information about what the mechanisms are that are limiting recovery.”

Researchers like Dr. Cope at Georgia Tech are working on a piece of this puzzle, studying to understand how the healthy and injured spinal cord contributes to and controls movement. Even with the great strides achieved recently by clinical studies, Dr. Cope explains that “We’re encouraged, but we have a long way to go.”

Audra Davidson is a third-year Applied Physiology Ph.D. student at Georgia Tech. 

Charged Magazine is an online magazine about science and math produced by students and faculty on the STEMcomm VIP team at Georgia Tech.

 

Georgia Tech has named Emily Weigel as the recipient of the 2019 Outstanding Undergraduate Academic Advising Award – Faculty. Weigel is an academic professional in the School of Biological Sciences.

Trained as an ecologist, Weigel views the world through organismal-environment interactions, including understanding individuals and how they are shaped by their environment. As she gets to know each student personally, she challenges them to investigate and engage in new ways with their college environment and the broader world. Her goal is to endow advisees with the skills they need to succeed on campus and out in the world.

Weigel cares deeply for her advisees, colleagues say. She empowers students by presenting options rather than prescriptions. She adjusts recommendations on the basis of students’ developmental needs. She is available to students outside of usual times when needed. She looks out for students in trouble. She keeps tabs on paperwork students need to advance and graduate. She cares about her students beyond their academic activities.

"Sometimes it can be a challenge to let students struggle in weighing their options, but it has been so rewarding to watch the growth in students that results."

Students hold Weigel in high esteem. “She not only exhibits the qualities of a great advisor, but also exemplifies what is meant to be a mentor: Someone who sees what you are capable of and encourages you to take risks,” says one former advisee. This advisee adds: “I have always left an appointment with her feeling confident about my decisions. There is no doubt in my mind that the attention and support she has given me is widespread among the students she advises.”

A student who is not an advisee credits Weigel for opening her eyes to an ecology career after getting a biology degree. “She always made herself available to answer any question I have regarding ecology. She never made me feel bad for asking questions even though I was not among her advisees,” this student says.

Weigel has had a strong impact on students who deeply value their interactions with her as an advisor, a colleague observes. This colleague adds: Weigel’s “extraordinary effort and effectiveness as a faculty advisor are evident throughout her work at Tech.” 

"I’m honored to be recognized, particularly in encouraging my advisees to find and forge their own paths,” Wiegel says. “Sometimes it can be a challenge to let students struggle in weighing their options, but it has been so rewarding to watch the growth in students that results.

“I am delighted to hear that students, too, recognize the effort it requires to provide them the tools and space to tackle problems on their own. Thanks, too, go out to my colleagues for helping foster such a collectively positive, exploratory environment for our students to define and reach their goals.”

Initiated in fall 2017, the B.S. in Neuroscience program has graduated its first students. Seven neuroscience majors graduating in May 2019 were among those students who changed their major to neuroscience as soon as the program was announced.

 “The program has grown to more than 200 students in just two years,” says Timothy Cope, professor in the School of Biological Sciences and the Wallace H. Coulter Department of Biomedical Engineering (BME). As chair of the Undergraduate Neuroscience Curriculum Committee, Cope played a key role in conceptualizing, launching, and implementing the degree program.

“We are confident that our graduates have mastered core principles in the field of neuroscience, been exposed to recent breakthroughs in the field, and acquired general strengths in critical thinking and problem solving,” Cope says.

“Neuroscience is an inherently interdisciplinary program,” David Collard, interim dean of the College of Sciences adds. “The bachelor degree program exemplifies Georgia Tech’s collaborative spirit in both education and research.”

Several graduating students say they shifted to neuroscience because the program better matched their interests than their original major. Many will go on to health-related fields.

The child of Iraqi immigrants, Sarah Abdulhameed was born in Champaign, Illinois, but became a teenager in Alpharetta, Georgia. She shifted to neuroscience because she always “wanted to understand the underlying mechanisms behind cognition, to better understand my patients in the future.” She will begin dental school at the Dental College of Georgia, Augusta University, in July.

The neuroscience program “helped me hack the brain,” Sarah says. “Understanding how the brain works will help me better connect with my patients.” Sarah hopes to apply neuroscience knowledge to help patients break unhealthy dietary and oral habits and build habits that strengthen oral health.

Neel Atawala is from Albany, Georgia. He says the neuroscience major gave him more flexibility than his original major did. While applying to medical schools, Neel will take a gap year working as a medical scribe at Emory University Hospital, in Atlanta.

“My degree has prepared me for a career in medicine by providing me with a very solid foundation in the anatomical and functional principles of neuroscience,” Neel says. That foundation “may give me an advantage when I encounter the unit focusing on the nervous system in medical school.”

Neel is the first neuroscience graduate to complete a research thesis, under the supervision and mentorship of Lewis Wheaton, in the School of Biological Sciences. Neel also served as president of the Georgia Tech Neuroscience Club.

"These graduates are pioneers."

Simran Gidwani had always wanted to become a neurologist. The neuroscience program, she says, was “the perfect fit for me!” Simran, who is from Suwanee, Georgia, will join a clinical research team at Children’s Healthcare of Atlanta for a year before entering medical school.

“From the very first introductory classes, my neuroscience classes taught me the value of research, how knowledge gleaned from certain studies contributes to the current state of the field, and how various methods can be used to advance our current knowledge of neuroscience,” Simran says. “By applying neuroscience methods and completing the process of drawing scientific conclusions many times, I have been very well prepared for my future professional plan.” 

Instead of changing majors, Paula Martinez-Feduchi Guijo double majored in biology and neuroscience. She had always wanted to study genetics and neuroscience, she says. “So I was very excited at the opportunity to complete a B.S. in Neuroscience. The research opportunities are unparalleled.”

After graduation, Paula will work as a research specialist in Emory University. Her next career goal is a doctorate in neurogenetics.

The classes for neuroscience majors “have prepared me to work in a laboratory full-time, conducting research using the methods and knowledge I learned in class,“ says Paula, who hails from Barcelona, Spain

Amy Patel graduates after only three years at Georgia Tech. She decided to shift to neuroscience after studying neural development in a Biological Principles class. “I found myself eager to learn about how the control center of the body can affect human anatomy and physiology and what illnesses may arise from complications in regular development,” Amy says. “A B.S. in Neuroscience felt like the right way to gain the exposure I was seeking.”

Born and raised in a Boston suburb, Amy moved with her family to Johns Creek, Georgia, almost 10 years ago. A New England Patriots fan, Amy connected her love for football with her research, which stemmed from her interest in Aaron Hernandez, whose football career abruptly ended when he was convicted for murder. For her undergraduate research thesis, under the supervision of Erin Buckley at BME, she analyzed how closed head impact, as is common in football, can cause metabolic changes in the brain. 

After graduation, Amy will do research at the Department of Orthopaedic Surgery and Rehabilitation at Vanderbilt University Medical Center, studying degenerative diseases of the musculoskeletal system in a clinical setting. “This project will serve as a great way to interact with neuroscience,” she says, “until we meet again in medical school.”

Asif Sheikh was born in North Dakota but grew up in Tifton, Georgia. “Neuroscience has always been my greatest passion,” he says. “Ever since I attended the February 2015 EXPLORE program at Tech when I first heard about the developing neuroscience major, I knew I had to attend Tech. It was always my intention to switch to neuroscience once I was able.”

Asif will attend Mercer University School of Medicine to pursue a career in neurology, with a focus on neurodegenerative diseases.

“Neuroscience at Tech has helped me get an early look into the complex machinations at work behind the nervous system and cemented this field as something to which I want to dedicate my life,” Asif says. “My course work and my time as an undergraduate researcher in a neuroimaging lab have given me the foundation on which to build my medical career."

Here are B.S. in Neuroscience students who graduated in May 4, 2019:

  • Sarah Abdulhameed
  • Neel Atawala
  • Simran Gidwani
  • Paula Martinez-Feduchi Guijo
  • Amy Patel
  • Zara Rose
  • Asif Sheikh

“These graduates are pioneers,” Collard says. “Now we will be interested in monitoring the future accomplishments of this talented group.”

In the war on antibiotic-resistant bacteria, it's not so much the antibiotics that are making the enemy stronger as it is how they are prescribed. A new study suggests that doctors can beat antibiotic resistance using those same antibiotics but in a very targeted manner and in combination with other health strategies.

The current broad application of antibiotics helps resistant bacterial strains evolve forward. But using data about bacteria’s specific resistances when prescribing those same drugs more precisely can help put the evolution of resistant strains in reverse, according to researchers from the Georgia Institute of Technology, Duke University, and Harvard University who conducted the study.

One researcher cautioned that time is pressing: New strategies against resistance that leverage antibiotics need to be in place before bacteria resistant to most every known antibiotic become too widespread. That would render antibiotics nearly useless, and it has been widely reported that this could happen by mid-century, making bacterial infections much more lethal.

“Once you get to that pan-resistant state, it’s over,” said Sam Brown, who co-led the study and is an associate professor in Georgia Tech’s School of Biological Sciences. “Timing is, unfortunately, an issue in tackling antibiotic resistance.”

The new study, which was co-led by game theorist David McAdams, a professor of business administration and economics at Duke University, delivers a mathematical model to help clinical and public health researchers devise new concrete prescription strategies and those supporting health strategies. The measures center on the analysis of bacterial strains to determine what drugs they are resistant to, and which not.

Some medical labs already scan human genomes for hereditary predispositions to certain medical conditions. Bacterial genomes are far simpler and much easier to analyze, and though the analytical technology is currently not standard equipment in doctors’ offices or medical labs they routinely work with, the researchers think this could change in a reasonable amount of time. This would enable the study’s approach.

The researchers published their study in the journal PLOS Biology on May 16, 2019. The work was funded by the Centers for Disease Control and Prevention, the National Institute of General Medical Sciences, the Simons Foundation, the Human Frontier Science Program, the Wenner-Gren Foundations, and the Royal Physiographic Society of Lund.

Q&A

Here are some questions and answers on how the study’s counterintuitive approach could beat back antibiotic resistance:

Isn’t prescribing antibiotics the problem? How can it fight resistance?

The real problem is the broad application of antibiotics. They treat human infections and farm animals, and in the process are killing off a lot of non-resistant bacteria while bacteria resistant to those drugs survive. The resistant strains can then reproduce and with fewer competitors in their space, then they dominate bacterial communities in the host animals and people.

The resistant bacteria get passed to other hosts and become more prevalent in the world altogether. New prescription strategies would outsmart that evolutionary scenario by exposing through genomic (or other) analysis bacteria’s resistance but also their vulnerabilities.

“Right now, there are rapid tests for the pathogen. If you’ve got strep throat, the clinic swabs the bacteria and does a rapid assay that says yes, that’s streptococcus,” Brown said. “But it won’t tell you if it’s resistant to the drug usually prescribed against it. In the future, diagnostics at the point-of-care could find out what strain you’ve got and if it’s resistant.”

Then clinicians would choose the specific antibiotics that the bacteria are not resistant to, and kill the bacteria, thus also stopping them from spreading the genes behind their resistance to other antibiotics. So, identifying an infector’s resistance hits two birds with one stone.

“It’s great for fighting antibiotic resistance, but it’s also good for patients because we’ll always use the correct antibiotic,” Brown said.

[Thinking about grad school? Here's how to apply to Georgia Tech.]

Are there enough effective antibiotics left to do this with?

Plenty. Antibiotics still work as a rule.

In addition, searching out and destroying resistant bacteria could help refresh existing antibiotics’ effectiveness.

“The idea is prevalent that we will use antibiotics up, and then they’re gone,” Brown said. “It doesn’t have to be that way. This study introduces the concept that antibiotics could become a renewable resource if we act on time.”

As mentioned above, prescription strategies by themselves won’t beat resistance, right?

Correct. Resistance evolution has some tricky complexities.

“A lot of bacteria with the potential to make us sick like E. coli spend most of their time just lurking peacefully in our bodies. These are bystander bacteria, and they are exposed to lots of antibiotics that we take for other things such as sore throats or ear aches,” Brown said. “This frequent exposure is probably the major driver of resistance evolution.”

The antibiotic prescription strategy needs those additional health care measures to win the fight, but those measures are pretty straightforward.

What are those additional measures?

Diagnostics need to apply to bystander bacteria, too. E. coli in the intestine or, for example, Strep pneumoniae living peacefully in nostrils would be checked for resistance, say, during annual checkups.

“If the patient is carrying a resistant strain, you work to beat it back before it can break out,” Brown said. “There could be non-antibiotic treatments that do this like, perhaps, bacteria replacement.”

Bacteria replacement therapy would introduce new bacteria into the patient’s body to outcompete the undesirable antibiotic-resistant bacteria and displace it. Also, people would stay home from school and work for a few days so as not to spread the bad bacteria to other people while their immune systems and possibly alternative therapies, such as bacteriophages or non-antibiotic drugs battle the bad bacteria.

This sounds hopeful, but are there other real-world circumstances to consider?

“The study’s mathematical models are broad simplifications of real life,” Brown said. “They don’t take into account that pathogens spend a lot of time in other antibiotic-exposed environments such as farms. Dealing with that is going to require some more research.”

The study also purposely leaves out "polymicrobial infections," which are infections by multiple kinds of bacteria at the same time. The researchers believe that the study’s models can still be relevant to them.

“We expect the logic of combating drug resistance to still hold in these more complex scenarios, but diagnostics and treatment rules will have to be honed for them specifically,” Brown said.

Also read: Want to beat antibiotic resistance? Rethink that strep throat prescription

These researchers coauthored the study: David McAdams from Duke University, Kristofer Wollein Waldetoft from Georgia Tech, and Christine Tedijanto and Marc Lipsitch from Harvard University. The research was funded by the Centers for Disease Control and Prevention (grant OADS BAA 2016-N-17812), the National Institute of General Medical Sciences at the National Institutes of Health (grant U54GM088558), the Simons Foundation (grant 396001), the Human Frontier Science Program (grant RGP0011/2014), the Wenner-Gren Foundations, and the Royal Physiographic Society of Lund.

Media contact/writer: Ben Brumfield

(404) 660-1408

ben.brumfield@comm.gatech.edu

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia  30332-0181  USA

By Mallory Rosten and Maureen Rouhi

You can’t do gymnastics without using your brain. That’s what Elena Shinohara has learned from her dad. It’s true. When she’s performing, her face is serene. But inside her mind, a lot goes on.

“You have the equipment, and you have your body, and then you have to worry about how clean you are.” And then there’s the artistry. On top of the technical skills, Elena also has to move with the music and perform as a character.

When it all comes together, magic happens. “I’m usually not the first one who talks in class,” Elena says, “I like to express myself with my body. With rhythmic, I can express my feelings with the music.”

Elena is a rhythmic gymnast. This type of gymnastics is performed solely on the floor and involves equipment like clubs, balls, and ribbons. Think figure skating, but without the ice.

Elena’s mom, Namie Shinohara, used to be on the Japanese national rhythmic gymnastics team. As a baby, Elena played with rhythmic equipment. “In first grade, my mom told me I could continue just having fun, or I could compete,” Elena says, “And I wanted to compete, I wanted to go to a higher level.”

Her mom explained what she would have to give up – time hanging out with friends, time spent being lazy and sitting on the couch. Any free moment would have to go to training. At seven years old, Elena knew what she wanted. She said yes.

“The highest my mom went up was sixth place, which is where I am right now,” Elena says. “I feel like we’re connected. She could’ve gone to the Olympics, but she didn’t practice enough. So it’s almost like I’m trying to beat my mom.”

Elena has her sights set on the 2020 Olympics in Tokyo, where she was born. But Tokyo is a year away, and to get there, Elena must be selected for the World Championships.

Balancing training with schoolwork is a challenge. Elena came to Tech because she always felt at home here. Her father is Minoru “Shino” Shinohara, an associate professor in the School of Biological Sciences.

Tech is also within driving distance of Suwanee, where the Shinoharas live. Unlike most college students, Elena lives at home so she can train regularly. “We also help her with nutrition and caloric intake,” Shino says. “That’s difficult to do on campus.”

Shino is an expert in applied physiology with a deep understanding of sports science. He and Namie – who is a national rhythmic gymnast coach and international judge – are Elena’s trainers. “We want athletes to use their brains to get better performance,” Shino says.

Shino applies science in coaching Elena. He videotapes Elena’s routines to have a deep look at the movements. “To control your body against gravity, you need to understand the physics and dynamics and then use your neuromuscular system to make it possible.”

Yet what’s most difficult is the mental discipline. “When gymnasts get into competition,” Shino says “their mental state fluctuates. If the mind is not stable, it sends incorrect commands, which create different movements.”

Elena is a biochemistry major, with hopes of becoming a dermatologist. She must use any free moment she has, including the 15 minutes in between classes, to do schoolwork.

“It’s a good balance because when I’m tired of gymnastics, I can do homework. If I’m brain tired of homework, I can work out my body.”

A national competition in July will determine who will represent the U.S. in the World Championships. Before that, Elena participated in two other international competitions in April, in Poland and in Amsterdam. To compete, she missed school for almost the entire month of April, save for four days before finals.

Elena is “beyond mature and prepared,” her faculty advisor, Kimberly Schurmeier says. “If she’s going to miss something, I know weeks in advance. She’s on top of everything and that’s why she’s able to succeed in and outside of class. She’s not the standard student. She has extraordinary talent on top of scholastic aptitude.”

There have been times when Elena wanted to quit.

“I first made it onto the national team in high school, but I wasn’t that good yet. I was like, what’s the point of doing this?” It was her parents who reminded Elena of her potential.  “I made a goal to do better at the next nationals. I started to work for it, and it was fun for me to get better and better.”

Earlier this year, she started to fall behind in competitions and again considered giving up. “I thought it was because I didn’t have time to practice,” she recalls. “But it was all mental. I realized I was doing badly because I kept worrying during competitions. If I’m more confident with my skills, I do better. So now I’m working on my mental state.”

It all goes back to the brain. Elena’s team, coached by her parents, is called The Rhythmic Brains, named, by her dad, of course. For Elena, the sacrifices to be at the top of her sport is all worth it, if only for those moments of dancing on the floor, moving with the music with athletic precision and artistry.

Mallory Rosten is a communications assistant in the College of Sciences. She did all the reporting and part of the writing of this story.

Pages

Subscribe to School of Biological Sciences | Georgia Institute of Technology | Atlanta, GA | Georgia Institute of Technology | Atlanta, GA RSS